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Abstract

Proper orthogonal decomposition (which is also known as the Karhunen
Loeve decomposition) is a reduction method that is used to obtain low
dimensional dynamic models of distributed parameter systems. Roughly
speaking, proper orthogonal decomposition (POD) is an optimal tech-
nique of finding a basis which spans an ensemble of data, collected from
an experiment or a numerical simulation of a dynamical system, in the
sense that when these basis functions are used in a Galerkin procedure
will yield a finite dimensional system with the smallest possible degrees
of freedom. Thus the technique is well suited to treat optimal control
and parameter estimation of distributed parameter systems. In this pa-
per, the method is applied to analyze the complex flow phenomenon in
a horizontal chemical vapor deposition (CVD) reactor. In particular, we
show that POD can be used to efficiently approximate solutions to the
compressible viscous flows coupled with the energy and the species equa-
tions. In addition, we also examined the feasibility and efficiency of POD
method in the optimal control of the source vapors to obtain the most
uniform deposition profile at the maximum growth rate. Finally, issues
concerning the implementation of the method and numerical calculations
are discussed.
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1 Introduction

Chemical vapor deposition (CVD) processes use a chemical reaction in the gas
phase above the surface of the film to deposit desired materials onto a susceptor.
CVD is a key element in a wide variety of industrial applications, ranging from
the fabrication of microelectronic circuits, solar cells, and optical devices to the
deposition of wear resistant coatings onto high performance machine tools. In
a typical CVD reactor, a mixture of reactants and carrier gas is forced to flow
across a heated susceptor. The temperature field from the heated susceptor
induces gas phase reactions to produce activated species which then diffuse to
the surface reaction layer and decompose to produce a thin film.

The deposited films, whose thicknesses range from a few nanometers to a
few microns, must be produced with controllable properties such as purity, com-
position, thickness, microstructure, and surface morphology (see e.g., Jensen et
al. (1991)). The tolerance limits on the properties of the films vary with the
application. Currently, however, the required properties of the majority of
industrially important thin films that are produced by CVD have become in-
creasingly difficult to achieve. For example, some most important applications
which pertain to infrared laser sources require micron thick films. This man-
dates epitaxial deposition at rates higher than those which can be achieved at
low densities. The associated density gradients (due to large temperature gra-
dients between the inlet and the susceptor) in a gravitational field will induce
natural convection flows. Convection, in turn, influences the growth processes
in two different ways, only one of which is beneficial. Convection increases mix-
ing and the overall transport and, thus, the growth rate, which is desirable. On
the other hand, it can also affect the morphology of the solid adversely. The
latter phenomenon is due, in part, to the increased residential time resulting
from the slow diffusional exchange of the reactant species between the main
flow stream and laminar recirculation cells. Thus, for both the design of CVD
reactors (including determining optimal operative conditions such as input flow
rates) and the improvement of device properties, a qualitative and/or quan-
titative understanding of the transport processes in CVD reactors is of great
importance.

In the past two decades steady progress has been made in the modeling
of the transport processes in CVD reactors. For example, Moffat and Jensen
(1986), (1988) used a fully parabolic flow approximation in axial direction for
a three-dimensional (3D) horizontal reactor. Gokoglu et al. (1989) studied the
deposition of S with a more detailed 3D flow treatment in a similar reactor
geometry. In Ouazzani et al. (1988), (1990), various 2D and 3D models of a
horizontal chemical vapor deposition reactor were investigated and the results
were compared with experimental data. Studies also have been carried out to
investigate crystal growth under reduced gravity conditions (see e.g., Ouazzani
et al. (1988) and Scroggs et al. (1995)). One potential advantage of such con-
ditions is that, under low gravity environment, buoyancy-driven convection is
reduced (Ostrach (1982)). For an in-depth review of the work in these areas see
the articles by Jensen (1989), Fotiadis (1990), and Jensen et al. (1991). Because
of the complexity in CVD reactor models (represented by systems of nonlinear
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partial differential equations), the majority of the models are solved numeri-
cally by either finite-difference (Coltrin et al. (1984)), finite-volume (Ouazzani
et al. (1990)), or finite-element methods (Jensen et al. (1991)). On the other
hand, analytical investigations have used similarity transformations (Pollard
and Newman (1980)) or separation of variable techniques (Fujii et al. (1972)).
These approaches are restricted to one-dimensional, linear, and constant coeffi-
cient equations. Consequently, these models neglect some of the more important
nonlinear effects in CVD processes such as buoyancy, temperature dependent
flow parameters, and nonlinear coupling between the thermal, flow, and species
fields. An asymptotic analysis of a CVD system which included temperature
dependent coefficients, nonlinear coupling of transport processes and Soret dif-
fusion effects was given by Young et al. (1992).

In addition to the above parameter studies (effects of operating conditions,
reactor geometry, and heat transfer characteristics on flow patterns and growth
rate uniformity), a more rigorous approach to the optimal design and control
has also been investigated. In Tto, et al. (1994), a shape optimization prob-
lem with respect to the geometry of the reactor and a boundary temperature
control problem were formulated. The material and shape derivatives of solu-
tions to the Boussinesq approximation were derived. Optimality conditions and
a numerical optimization method based on the augmented Lagrangian method
were developed for boundary control of Boussinesq flow. Numerical calculations
in Tto et al. (1995) indicated the effectiveness of temperature control through
a portion of the boundary for improving the vertical transport of flow in the
cavity.

Numerical simulation has been shown to be an effective tool for the un-
derstanding and improvement of CVD processes. Of particular interest to the
present investigation is the development of a framework to extend these simu-
lation capabilities into the realm of optimal design and optimal control of CVD
reactors. For the optimal control of CVD processes, we begin by defining a set of
process parameters which control the system (e.g., flow rates, species concentra-
tion), and cost and constraint functions which quantify the desirable quantities
of the response (e.g., growth rate and uniform fluxes of reactants at the suscep-
tor). We then perform the simulation of the system process, and subsequently
evaluate the cost and the constraint functions. These data are then supplied
to some numerical optimization routine which modifies the process parameters
to reduce the cost functional value and to satisfy the constraints (Banks, et
al. (1997)). The complex fluid dynamics in CVD processes are described by
a system of nonlinear partial differential equations representing the continuity,
momentum, energy, species and equation of state. Therefore, numerical sim-
ulations of such systems using finite element, finite volume, finite difference,
or spectral methods will lead, in general, to a very large system of ordinary
differential equations rendering it inapplicable in real time estimation and con-
trol. One approach to overcome these difficulties is to perform model-predictive
control of these distributed parameter systems. Although this method has the
merit of small degrees of freedom, they do not represent the physical model, but
rather an empirical model that is based on input and output of a given system
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and may become unstable as the operating condition of the system changes.
For an efficient real-time control of CVD reactors where continuous computa-
tions must be performed, not only the degrees of freedom of the dynamic model
must be small but the dynamic model must also be robust. In this work, we
demonstrate the feasibility and efficiency of the proper orthogonal decompo-
sition technique (or the Karhunen-Loéve procedure) in flow calculations and
the optimal control of CVD processes. The proper orthogonal decomposition
(POD) is a reduction method that has been shown to be an effective tool for
the analysis of complex systems such as turbulence flows, shear flows, pattern
recognition, and weather prediction (see e.g., Berkooz, et al. (1993) and the
references therein). In general, the discretization of nonlinear partial differen-
tial equations using finite element, finite volume, or finite different methods
involves basis functions that have little to do with the differential equation.
For example, piecewise polynomials are used in the finite element method, grid
functions are used in the finite difference method, and Legendre or Chebyshev
polynomials are used in some spectral methods. POD, on the other hand, uses
basis functions that span a data set, collected from an experiment or numerical
simulation of a dynamical system, in a certain “optimal” fashion. Because POD
basis elements are optimal in the sense that they are the extractions of char-
acteristic features of the data set, only a small number of POD basis functions
are needed to describe the solution.

The organization of this paper is as follow. We describe in §2 a horizontal
CVD reactor and its mathematical description. The POD technique and its
mathematical properties are presented in §3. In §4 we discuss issues concerning
the implementation and numerical calculations using POD in the context of
simulating the flow dynamics in the CVD process. Finally, in §5 the method
is applied to solve an optimal control problem to achieve film uniformity and
maximum growth rate.

2 Formulation of the Problem

The particular geometry of the organo-metallic chemical vapor deposition (OM-
CVD) reactor under consideration here features horizontal flow of the process
gases and source vapor/carrier gas mixtures into an expansion section leading
into a rectangular channel that contains the substrate (see Figure 1). The sub-
strate wafer is mounted on a rotating induction heated SiC coated graphite sus-
ceptor. The exhaust gases are vented through a vertical exhaust tube. Loading
and unloading of substrate wafers is accomplished through a load-lock chamber
beneath the radio frequency (rf) section of the reactor that can be evacuated by
a turbomolecular pump. After purging with ultra-pure nitrogen, sample trans-
fer can be executed using a magnetic transfer rod. Gas is purging through the
gap between the susceptor and the reactor’s base to avoid flow of gas mixtures
to the mechanical workings behind the susceptor. The quartz glass reactor is
connected at the inlet to a source vapor/process gas flow control and switching
panel that directs individual streams of source vapor saturated carrier gas ei-
ther to a vent line or to the reactor. Thus, pulsed operation separating plugs of
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Figure 1: Schematic representation of a horizontal, quartz reactor in a steel
confinement shell

source vapor saturated carrier gas by plugs of high purity carrier gas, flow rate
modulated flow or continuous flow can be implemented for all source vapors
without change in reactor pressure or total flow. Two optical windows at the
Brewster angle of the substrate are attached to the sides of the reactor. They
allow for the real-time process monitoring utilizing p-polarized reflectance spec-
troscopy (PRS) (see e.g., Bachmann, et al (1998) and the references therein).
This OMCVD reactor has been built in the laboratory of Prof. Klaus Bachmann
at North Carolina State University and is now undergoing initial testing.

To demonstrate that the POD method can be implemented to approximate
transport processes efficiently in the CVD reactor, we will restrict our study to
a two-dimensional horizontal reactor as shown in Figure 2 (this can be thought
of as a vertical “slice” of the actual 3-D reactor tube). Our study involving the
full 3-dimensional geometry will be presented in subsequent papers. We will
consider the deposition of GaN using pulsed trimethyl-gallium (TMGa) and
ammonia (NHg) as source vapors and nitrogen as carrier gas (see Figure 3).
The function F'(t) in Figure 3 represents the pulses of reactive gases entering
the reactor. In particular, at first only carrier gas flows through the reactor.
After the flow reaches steady state, a pulse of reactant (e.g., TMGa) diluted with
carrier gas enters the reactor. After the pulse, the reactor is then flushed with
carrier gas. This process is then repeated for another reactant. Furthermore,
the following assumptions are made for the mathematical formulation of this
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L Reactant # 2 = NH3 Diluted with Carrier Gas

Reactant # 1 = TMGa Diluted with Carrier Gas

— Carrier Gas = Nitrogen

Figure 3: Chemicals introduced into the reactor at the inlet

Carrier gas flows through the reactor at all time.

All thermo-physical properties, conductivity, viscosity, mass diffusivity,
and volume expansion are temperature dependent.

Only a trace amount of reactants mixed with carrier gas is allowed to
enter the reactor at each pulse so that the steady state gas flow condition
and all temperature dependent parameters in (ii) remain unchanged.

No chemical reaction takes place in the gas phase.

Reactions taking place on the heated substrate are very fast and equilib-
rium is attained quickly. Thus, the rate of GaN deposition is limited by
mass transport.

The wall of the reactor 1s water cooled.

Under the above assumptions, CVD processes can be classified as a quasi-
transient flow (steady-state flow with transient species) and be described by the
following governing partial differential equations written in conservation form

(see e.g., Oran and Boris [1987] and Oswatitsch [1956]).
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Mass conservation equation:
V- (pi) =0, (2.1)

where p is the density of the carrier gas and W = (u1, u2) is the velocity vector.
Momentum conservation equation:

pi-Vi=—-VP+V-o+(p—po)gj, (2.2)

where the viscous stress tensor ¢ has the form

7 = [ar (Vi + (VT + (5~ 2pr)(V ) - T
Here we treat the gas mixture as a Newtonian fluid and P is the pressure,
pr 1s the carrier gas viscosity, & is the bulk viscosity which can be neglected
for dense gases or liquids, g is the gravitational force, and pgy is the reference
density. The (p — po)gf term accounts for the natural convection effect caused
by the gravitational force.
Energy conservation equation:

cppii - VT =V - (ApVT), (2.3)

where T is the temperature, and ¢, is the heat capacity and Ar is thermal
conductivity of the carrier gas.
Mass conservation of species:

%+ﬁ~Vc: %V~(pDTVc), (2.4)
where ¢ is the mass fraction of TMGa and Dyp is the diffusion coefficient of
TMGa in the carrier gas. Here, without loss of generality, only the transport
of TMGa is modeled.

Expansion of the gas as it approaches the heated susceptor plays a major role
in the flow behavior and it is accounted for by using the following Boussinesq
approximation for the density as a function of the temperature:

p = po[l = pr(T - To)], (2.5)

where fr is the volume expansion and Tp is a reference temperature.

The boundary conditions for the above set of equations (2.2)-(2.5) are sum-
marized in Figure 4, where the parabolic profile for the velocity field at the inlet
is described by

U
ui(t) = f}lgxy(H —y) and wug(t) =0,

with Umax = 0.25 m/s and H = 0.535 inch is the height of the reactor. The
initial condition for the species equation is zero throughout the domain of the
rectangular reactor.
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c](s)(r)llcliriltcil g;}; Velocity Temperature Species
Inlet Parabolic profile 298 K E(t)
Walls 0 298 K dc/dn=0

Susceptor 0 1200 K 0
Outlet dui /dn=0,1i=1,2 dT/dn =0 dc/dn=0

Figure 4: Boundary Conditions for the 2D Horizontal Reactor

In this model, one proceeds first by solving for the steady state solutions
of the flow and energy equations. These solutions are then substituted into
equation (2.4) to solve for the time dependent species solution. Even though
the flow and energy solution are decoupled from the mass transport analysis, the
dynamical model is still an infinite dimensional system of equations. Standard
techniques such as finite difference or finite element methods can be employed
to reduce the infinite dimensional models to finite dimensional ones, but the
resulting degrees of freedom are, in general, too large for practical considerations
in estimation or control.

It will be demonstrated in the sequel that a Galerkin procedure employing
basis functions which are computed from the proper orthogonal decomposition
can efficiently reduce distributed parameter systems to low order finite dimen-
sional dynamical models while maintaining high fidelity. Thus, this approach is
particularly suitable to treat optimal control and parameter estimation prob-
lems of systems governed by partial differential equations.

3 Proper Orthogonal Decomposition

The proper orthogonal decomposition (POD) method has received much atten-
tion in recent years as a tool to analyze complex physical systems. In principle,
the idea 1s to use a reliable solver to produce a priori a number of solutions
to the physical model (called snapshots). The POD technique is then used to
produce an “optimal” representation of these snapshots in an “average” sense.
Both notions, “optimal” and “average”, will be made clear in subsequent dis-
cussions. The power of the POD method lies in its mathematical properties
which suggest that it is the preferred method to use in many applications.
Proper orthogonal decomposition was independently proposed by several
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scientists including Karhunen (1946), Loeve (1945), Pougachev (1953), and
Obukhov (1954) (for recent surveys in this area see the works of Lumley (1970)
and Berkooz (1992)). Some mathematical theories of POD can be found in
recent articles by Aubry, Lian and Titi (1993) and Graham and Kevrekidis
(1996). The POD technique has been applied to numerous applications. One
such important application was the attraction of spatial organized motions in
fluid flows. Theodorsen (1952) and later Townsend (1956) observed and in-
dicated that there are large-scale organized motions embedded in turbulent
shear flows. Lumley (1967), Aubry, Holmes, Lumley and Stone (1988), Sirovich
(1991), Berkooz, Holmes and Lumley (1993), Berkooz, Holmes, Lumley and
Mattingly (1997) have adapted the POD technique to study turbulent flows.
Other applications of POD include channel flows by Moin and Moser (1989),
Ball, Sirovich and Keefe (1991), square-duct flows by Reichert, Hatay, Biringer
and Husser (1994), and shear flows by Rajaee, Karlson and Sirovich (1993),
Kirby, Boris and Sirovich (1990). Other scientists have also applied the POD
technique to fluid related problems. For instance, it has been applied to the
Burgers’ equation by Chambers, Adrian, Moin, Stewart and Sung (1988), the
Ginzburg-Landau equation and the Bénard convection by Sirovich (1989). Ly
and Tran (1998) have used POD to simulate and solve an optimal control prob-
lem for Rayleigh-Bénard convection. Other interesting non-fluid applications of
POD techniques are the characterization of human faces by Kirby and Sirovich
(1990) and image recognition by Hilai and Rubinstein (1994).

As will be seen in the following section, one reason that POD is an attractive
method is that it is a linear procedure. Its mathematical theory is based on
the spectral theory of compact, self-adjoint operators. However, it should be
noted that POD makes no assumption on the linearity of the problem to which
it 1s applied and this is an extremely positive feature of this approach to model
reduction.

3.1 Mathematical Aspects of POD

Let {U;(z) : 1 < ¢ < Njz € Q} denote the set of N observations (also called
snapshots) of some physical processes over a domain Q. In the context of CVD
process, these observations could be experimental measurements or numerical
solutions of velocity fields, temperatures, species etc. taken at different phys-
ical parameters (Reynolds number, input flow rates etc.) or time steps. The
POD technique is designed to extract from this set of observations a coherent
structure, which has the largest mean square projection on the observations.
In other words, we look for a function @, or the so-called POD basis element,
that most resembles {U;(z)}; in the sense that it maximizes

AT (3.1)

subject to

(@, @)= 9| =1,
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where (-,-) and || - || denote the usual L? inner product and L%*norm over Q,
respectively. We choose a special class of trial functions for ® to be of the form:

N
=) aU; (3.2)
i=1

where the coefficients a; are to be determined so that ® given by the expression
(3.2) provides a maximum for (3.1). To this end, let us define

ZUi(m)Ui(m’) and R® ::/ﬂK(m,x')@(m')dm',

i=1

1
K(z,z') = I

where R : L%(Q) — L%(Q).

Then straightforward calculations reveal that
(R®,9) = / RO(z)®(z)dx
Q

- /ﬂ/ﬂK(m,m’)(b(x’)dr’@(m)dm
%é /ﬂ /ﬂ Ui (2)Us(2)) 0(2')da' B(2) da

1 N
LY (e,
i=1

Furthermore, it follows that

(R®,¥) = (®,R¥) for any & ¥ €L’

Thus R is a nonnegative symmetric operator on L?(2). Consequently, the prob-
lem of maximizing the expression (3.1) amounts to finding the largest eigenvalue
to the eigenvalue problem

R® = A® subject to [|®] =1, (3.3)

or

/ K(z,2')®(z")dz' = A® with [|®] = 1. (3.4)
Q

Substituting expression (3.2) and the definition of K into equation (3.4), we
obtain

Z[Z(% U;(2/)Ug(2")d2")ar)Uy(z) = Z Aa; Uj(z).

This can be rewritten as the eigenvalue problem

CV = \V,
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where
aq

Cip = i‘/ U;(z)Ug(z)dz and V = . . (3.5)
N Q .

an

Since C is a nonnegative Hermitian matrix, it has a complete set of orthogonal
eigenvectors

1 2 N

a% a}) ajl\r

) as , as; ~ as
V= . , Vo= . ,.o., V=

1 2 N

an an an

with the corresponding eigenvalues Ay > Ay > --- > Any > 0. Thus, the solution
to the optimization problem for (3.1) is given by

N
@ => ajU,
i=1
where a} are the elements of the eigenvector V1 corresponding to the largest
eigenvalue A;. The remaining POD basis elements, ®;, ¢ = 2,... N, are ob-

tained by using the elements of other eigenvectors, Vi, i =2, ..., N. Moreover
using the orthogonality of {V*:1 < k < N} and the imposed condition:

N 1 o
Vk.VkI:Eafaflz N/\k’ k=k
i=1 0 k;ékla

we obtain

(‘bk,q)k/) = / @k(r)ékz(r)dr
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Thus, the POD basis {®1,®,..., Py} forms an orthonormal set.

Remarks. An alternative approach for finding the solution to maximization
of (3.1) is by using the so-called Rayleigh-Ritz method for finding eigenvalues
(see Kanwal (1997) p. 176). Since

N N N N
(R®,®) = (RD_a;U],Y arUi) = > > Ruaay,
i=1 k=1

i=1 k=1

and

o] = (®, ) = ZZNCMa ar,

i=1k=1

where Rik = (RUZ,Uk) = (UZ,RUk) and Cik = %(UZ,Uk) = %(Uk,UZ) as
above in (3.5), the problem of maximizing (3.1) can be transformed into an
extremal problem in multi-variable calculus with {ai,as,...,an} as variables.
Recalling the method of Lagrange multipliers, we define

N N
G(al,..., ZZRikaiak —)\Ncik(li(lk,

i=1 k=1

where X is the Lagrange multiplier. Equating 0G/da; to 0 (a necessary condi-
tion for optimality) we find

N
> (Rix —ANCip)ap =0 for i=1,...,N. (3.6)
k=1

Equation (3.6) has a nontrivial solution if and only if the determinant of
(R—ANC) = 0. This determinant, when expanded, yields an Nth degree poly-
nomial in A which can be shown to have N nonnegative real roots, but not neces-
sarily distinct (these can be ordered in descending order as Ay > Ay > -+ > Ay)
(Kanwal (1997)). Moreover by multiplying equation (3.6) by a; and summing
over i = 1,..., N, we obtain A = (R®, ®). It can be shown that solution pair
(Ai, V) where VI = (ai, ..., a%), is the eigenvalue and eigenvector of the ma-
trix C. One then uses the definition of @ in (3.2) to obtain {®1,Ps,..., Py}
and uses the fact that the matrix C = [C;;] is Hermitian to justify the or-
thonormality of {®}’s as in previous argument.

3.2 Optimality of the POD Basis

Suppose that we have a signal v(z,t) with v € L?(Q,[0,7]) and an approxi-
mation of vV of v with respect to an arbitrary orthonormal basis v;(z), i =

1,2,...,N:

N(w,t) = Zai(t)%(l‘)
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If the ;(z) have been nondimensionalized, then the coefficients a@; carry the
dimension of the quantity v™V. If vV (z,¢) denotes the velocity and < - > denotes
the time average operator, then the average kinetic energy per unit mass is given

by

< AUN(I,t)UN*(m,t) dr >=< Zai(t)af(t) >

Consequently, the expression < a;a} > represents the average kinetic energy in

the it"-mode. The following lemma establishes the notion of optimality of the
POD method.

Lemma 3.1 Let {®1,®P,y,...,Pxn} denole the orthonormal set of POD basis

elements and (A1, Aa, ..., AN) denote the corresponding set of eigenvalues. If
N
vN (@, 1) =D bi(t)®s(x)
i=1

denotes the approximation to v with respect to this basis, then the following

hold:
(a) < bi(t)b;f(t) >=6;; A; (that is, the POD coefficients are uncorrelated).
(b) For every N,

SO<bitbi () >=D N > D> < ait)ai(t) > .

The proof of this lemma is straight forward from the optimality of the eigen-
values and can be found in Berkooz, Holmes, and Lumley (1993). This lemma
establishes that among all linear combinations, the POD is the most efficient,
in the sense that, for a given number of modes, N, the projection on the sub-
space used for approximation will contain the most kinetic energy possible in
an average sense.

3.3 Model Reduction Features of POD Approximations

To this point we have not discussed any model reduction features associated
with using POD basis elements in approximation schemes. In the construc-
tion described above, the number N may be large, 100 — 1000 or even more,
depending on the complexity of the dynamics represented in the “snapshots”
U;. In general, one should take N sufficiently large so that the snapshots U;
contain all salient features of the dynamics being investigated. Thus, the POD
basis functions ®;, used with the original dynamics in a nonlinear Galerkin
procedure, offers the possibilities of achieving a high fidelity model, albeit with
perhaps a large dimension N.

To achieve model reduction, one chooses M < N and carries out a nonlin-
ear Galerkin procedure with the set of elements {®1, @5, ..., ®pr}. The crucial
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question is how to choose M. As we indicated in the previous section, Ef‘il A
represents the average kinetic energy contained in the first M modes and hence
to capture most of the energy of the system contained in the N POD ele-
ments, it suffices to choose M so that Zf‘il S Zf\;l ;. Indeed, the ratio

Ef‘il )\i/zﬁil A; yields the percentage of the total kinetic energy in the N
POD elements that is contained in the first M POD elements. Since the asso-
ciated POD eigenvalues are ordered A1 > Ay > -+ > Ay, one can reasonably
expect to achieve a high percentage of the total kinetic energy in a reduced
model of order M with M sufficiently smaller than N. For the CVD examples
detailed below, the POD system was constructed for N = 200 and a reduced
order model with M = 10 yielded a ratio of .999, resulting in a truly signifi-
cant computational savings over the finite element model (2,400 quadrilateral
elements) of dimension 14,801 used to generate the 200 snapshots.

4 Application of POD for the Simulation of CVD
Processes

We return to the CVD example of §2 to apply the POD techniques. Under
assumption (iii) of §2, that is only a trace amount of TMGa mixed with carrier
gas is used, the steady state flow and energy solutions can be decoupled from
the mass transport equation. Therefore, we first solve equations (2.1)-(2.3)
and (2.5) for the steady state solutions of velocity field, temperature, density
and pressure. These solutions, depicted graphically in Figure 5, are computed
using a commercial fluid dynamics package called FIDAP version 7.6 which
employs the finite element method. In our simulations we used 2,400 (9-nodal
quadratic) quadrilateral elements. Here and in all subsequent plots, higher
numerical values are represented by darker shaded region.

Once the flow has reached steady state condition in the reactor, we introduce
TMGa into the reactor from the inlet. As mentioned earlier, the term F'(t)
used in the boundary condition for the species at the inlet, c¢(Z,t)];,10t = F(2),
describes the incoming pulses of TMGa. Using the steady state velocity and
density solutions (for the terms 1 and p) and the steady state temperature
solution (to compute temperature dependent mass diffusivity Dr) in equation
(2.4), we simulated the species equation for zero initial condition and various
boundary conditions F'(t) using FIDAP. Figure 6 displays TMGa profiles at
different time steps from 0.05 to 0.75 seconds corresponding to the boundary
condition ¢(X,?)[;1et = F(t) = 1, for all £ > 0. We note that, depending on the
duration of TMGa introduced at the inlet, different TMGa profiles will result in
the reactor. In particular, for the following boundary condition (see also Figure
8):

Fit)y=1 0<t<T;

m>

(X, t)linlet = { 0 Tip <t < Tip+Tout-

Figure 7 depicts two different reactant profiles at different time steps from 0.05
second to Ty, = 0.4 second corresponding to T;, = 0.3 second and T;, =
0.75 second. In the sequel, we will demonstrate that the proper orthogonal
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Steady-State Flow with Nitrogen as Carrier Gas
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Figure 5: Steady state velocity field, temperature, density and pressure

decomposition method implemented in a Galerkin procedure can be used to
simulate both accurately and efficiently the complicated species dynamics for
different boundary conditions (i.e., different T;;, values).

4.1 Construction of POD Basis Vectors

Consider the following semi-discrete nonlinear equation of the form

(Z—?:g(t,w(t)), forte R, we X, G:Rx X — X, (4.1)
where X is a finite-dimensional space. If finite element procedures were used to
obtain this semi-discrete problem, then the choice for X would be defined by
span{i, ¢, ..., N} where, for example, ; are piecewise polynomial functions
(e.g., the so-called hat functions, or spline functions). In the POD technique,
however, we will make a different choice for the approximatingspace. Let XPOP
denote the POD space such that XPOP c X. The procedure for computing
XPOD consists of the following steps.



Use of the POD method in CVD reactor 16

Species Introduced into Reactor

0.75s 0.7s 065s 06s 055s 05s 045s 04s 035s 03s 025s 02s 0.15s 0.1s 0.05s

Figure 6: TMGa profile due to the continuous input of reactant at the inlet

(i) Obtain the snapshots. We first allow the chemical mixture of TMGa and
N5 to enter the reactor at the inlet for 0.5 second. After 0.5 second, we
shut off TMGa and allow only carrier gas, N3, to flow in for one sec-
ond, during which we solve the species equation at 200 time steps (then
snapshots) {c1(X), c2(X), ..., ca00(X)} at an increment of 0.005 second for
X € Q (here, ©Q denotes the two-dimensional rectangular domain as de-
picted in Figure 2). These snapshots are pointwise discrete data of species
over €, which have been computed using FIDAP. Some sample snapshots
of species are displayed in Figure 9. We note that at time ¢ = 0.8 sec-
ond (see snapshot # 160) most of the TMGa has been carried out of the
reactor.
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Figure 7: TMGa profiles corresponding to Tj;, equals to .3 second (left) and
0.75 second (right)

(ii) Compute the covariant mairiz C. The matrix elements of C are given by

1

Cir=o—= [ @
£ = 300 J, il

X)er (X)dz,

for i,k =1,2,...,200.

(iii) Solve the eigenvalue problem CV = AV. We recall that since C is a
nonnegative, Hermitian matrix, it has a complete set of orthogonal eigen-

vectors
1 200
4 “ Yoo
1 3 2 3 200 @3
V' = . , V7= . , ., V7 = .
1 2 200
Q300 Q300 300

with the corresponding eigenvalues arranged in ascending order as A; >
Ay >+ > Agpo > 0.
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Figure 8: Schematic diagram for the boundary condition of TMGa at the inlet

(iv) Compute the POD basis vectors. The POD basis elements ®;(X) such that
XPOD — span{®,(X), ®2(X), ..., P200(X)} are defined as

200

_2 : k
(I>k— aici,

i=1

where 1 < k < 200 and a¥ are the elements of the eigenvector V¥ corre-
sponding to the eigenvalue A.

4.2 Reconstruction of Solutions Using POD Basis Vectors

We next consider the species equation

% +ud-Ve= %V -(pDrVe), c(X,0) = ¢g(X), (4.2)
where 1, and the temperature dependent parameters p, and D are obtained
from the steady state solutions of the coupled system (2.1)-(2.3) and (2.5) with
boundary condition as described in Figure 4. In this section, we will consider the
problem of approximating the infinite-dimensional equation (4.2) by a sequence
of finite-dimensional problems using a combination of Galerkin approximations
and POD basis elements. We first formulate the species equation (4.2) in a
variational or weak form; that is, we seek a solution t — ¢(t) on 0 < ¢t < T,
with ¢(t) € H'(Q) satisfying

(e, )+ (A Ve, ) = (%Vc-Vp, ) —(DrVe, Vi) + DryVe-iids (4.3)
a0

for all ¢ € H'(Q), along with initial condition
c(0) =g.

Here, 11 denotes the unit outward normal vector to the boundary 92 of the
domain €.
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#40

#80

#120

#160

#200

Figure 9: Snapshots #1, 40, 80, 120, 160 and 200

As we have discussed in the previous section, fewer than 200 POD basis
vectors are used to approximate the species solution thereby achieving a reduced
order model. That is, the energy contained in the first M POD modes, M <
200, represents most of the energy in the system, if we choose M so that

200

M
PRI
i=1 i=1

In our case, we found that the first 10 POD basis functions, displayed in Figure
10, capture over 99.9% of the characteristics of the 200 observations. Here, for
i =1,...,10, POD # i refers to the graph of the function ®;(X) for X € Q.
More precisely, »

ng; A _ 999,

Di= i

Therefore, it is reasonable to approximate the species solution by using only
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the first 10 POD basis vectors, wherein we obtain a solution of the form

10

cpon (%,1) = Y ai(t)®i(X).

POD # 2

POD #4

POD #6

20

(4.4)

POD#8

)

Figure 10: The first 10 POD elements

POD # 10

Using the form of ¢(X,t) in (4.4) and the orthonormality of the {®;}’s, we
apply a Galerkin procedure to equation (4.2) to obtain a system of 10 ordinary

differential equations for the coefficients «;

I
Z

j(011,012, . --,0110)

for 1 < j < 10, where

10 10

~

i=1 i=1
10

N; = ) (%V'(PDTV@),@,-)—Z(ﬁ-VQi,tbj) i(t)

(4.5)

= — Z[(DTV% Vo) + (%V(I)i Vp,®;) — (- V&, ®;)]ai(t).

i=1
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The first of these equalities results from using (4.4) in a strong form of (4.2),
multiplying by elements and integrating, while the equivalent second equality
results from using (4.4) directly in the weak form (4.3) in the usual Galerkin
procedure. The solutions to the initial value problem (4.5) yield the coefficients
of the POD basis function approximation (4.4).

4.3 Simulation Results

In this section, we examine the accuracy and efficiency of the low-dimensional
dynamical model (4.5) obtained from the Galerkin procedure employing POD
basis functions by comparing its solution with the solution obtained from the
fluid dynamics package FIDAP. More specifically, in FIDAP the domain 2
is discretized using 2400 (9-nodal quadratic) quadrilateral elements. Conse-
quently, by using FIDAP, a system of 14,801 ordinary differential equations has
to be solved for the coefficients of the basis function approximation. We point
out again that in our formulation using a Galerkin procedure with POD basis
functions, the resulting approximation is a system of 10 ordinary differential
equations for the coefficients of the POD basis function approximation (4.4).

Figure 11 compares the reduced solution using 10 POD basis functions to
the full solution obtained from FIDAP employing 2400 (9-nodal quadratic)
quadrilateral finite elements. Specifically, both solutions are obtained with
boundary condition

- F(t):l 0<t<T;,,
C(th)linlet = { 0 TlIl < t’ m

where T}, = 0.5 second. Qualitatively, the reduced POD basis results agrees
favorably with the full FIDAP calculations. Quantitatively, the upper plot in
Figure 12 graphs the Ly norms of FIDAP solutions, ||crpap (-, )| L,(q), and the
L4 absolute errors between POD solutions and FIDAP solutions ||epop (-, ) —
crpAP (-, 1)||L,(q)- The bottom plot in Figure 12 graphs the Ly norms of FIDAP
fluxes, ||Frpap (-, 1)l L.(q), and the Ly absolute errors between POD fluxes and
FIDAP fluxes ||Fpon(-,t) — Frmar(-,1)||L,q,) Here, the flux of the species
above the susceptor (€2,) that dictates the rate at which species arrives at the
surface is defined by

F(X,t) .= (DpVe(X, t) + pe(X,)d) - fi|zeq, -

The flux of species above the susceptor is used in the next section to define the
cost functional in an optimal control problem. Therefore, it is important that
this quantity can be computed accurately. For a comparison, Figure 13 depicts
the fluxes at the susceptor computed using POD basis functions and FIDAP
software package. Both results agree remarkably well.
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Figure 11: FIDAP Solution (left) and POD solution (right) at different times
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La-norm error (*), [|cpop(+,t) — erpap(+,1)||. Bottom: the Ly-norm of FIDAP
flux (o), || Frmpar(-,t)||, and the Ls-norm of the flux error (*), [|Fpon(-,t) —
Frnapr (-, 1)]|
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Figure 13: Fluxes of species at the susceptor using FIDAP (.) and POD basis
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We recall that POD basis functions were computed from the snapshots cor-
responding to the boundary condition (4.3) with 7}, = 0.5 second. To be useful
in developing both open loop and feedback control strategies, we would like for
these same reduced number of POD elements to yield good approximations
under other flow input conditions. That is, we would like to demonstrate that
using exactly these 10 POD modes, we are able to construct POD solutions
for different durations of species introduced into the reactor. Particularly, we
solved the same system (4.5) with initial conditions «;(0) = (e(X, Tin), ®) for
Tin = 0.3 second and T}, = 0.75 second. Figure 14 depicts the Ls-norms of the
solution errors and Ls-norms of the flux errors above the susceptor using POD
basis functions and FIDAP for 7}, = 0.30 second and 7}, = 0.75 second.
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Figure 14: (left columm, 7}, = 0.3 second, right columm, 7}, = 0.75 sec-
ond): Top, the Ly-norm of FIDAP solution (0), ||eripap(-, )|, and the solution
error (¥), |lepon (-, t) — crmpap(+, t)||; Bottom, the Ly-norm of FIDAP flux (o),
[|Fripap (-, t)||, and the La-norm of the flux error (*), || Frop (-, t)— Frpapr(-,1)]|

5 An Optimal Control Problem

In this section we demonstrate the use of reduced POD models in an open loop
optimal control problem. While this example involves only one control variable,
it does illustrate effectively the potential of POD methods in control problems.

In the case of GaN heteroepitaxy film growth employing pulsed trimethyl-
gallium (TMGa) and ammonia (NHz) as source vapors, depending on the delay
between the TMGa and NHj3 source vapor pulses, carry-over of TMGa frag-
ments from one precursor pulse cycle to the next may occur. This, in turn,
establishes a surface reaction layer (SRL), consisting of mixture of reactants
and products of the chemical reactions that drive the epitaxial growth process.
The thickness and composition of the SRL depends on the relative heights and
widths, i.e. T}, of the employed TMGa and NH3 source vapor pulses and their
repetition rate. More specifically, if T}, is small, then the flux above the sus-
ceptor is uniform. Yet this will take a long time to grow a film which makes
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it inviable in industrial applications. On the other hand, by allowing massive
chemical input at the inlet (i.e., T}, is large) we will speed up the growing
process; but the flux above the susceptor may not be uniform. Therefore it
is desirable to perform an optimization procedure to determine the most de-
sirable T}, to achieve both film uniformity and fastest possible growth rate.
Mathematically, we would like to find the optimal 7}, so that the flux fluctu-
ation, %T, i1s small while at the same time we maximize the flux, F, to the
substrate. Consequently, one way to formulate a quantitative representation of

these conflicting desires is to seek Tﬂl so that the cost functional

o 1
t=7142 R 1
Cost =T+ 7, T 501012 (5-1)

is minimized, where

Iz/m Ou/ 2 Pddt,
0 Q. al‘

T +T t
J:/ n O“/ |\ F|2dedt.
0 Q

s

and

Here, T;t denotes the time delay between the source vapor pulses and, based on
experimental results, we take 75, = 0.600 second. The above cost functional
(5.1) is minimized subject to the system (2.2)-(2.5) along with their boundary
conditions. The constant « in (5.1) is scaled to make I and % proportioned. It
also bears the trade-off value which represents on one’s desires to balance film
uniformity and faster growth rate.

Given a value of T}, the system of equations (2.2)-(2.5) is solved for the
species solution which is then substituted into the formula (4.3) for the flux,
F. Hence, the above optimization problem is an unconstrained minimization
problem involving one parameter, T3,,. We carried out computations for such a
control example. For these, we chose the DUVMGS subroutine in the Fortran
IMSL library [1989] which is designed to minimize a nonsmooth function with
double-precision accuracy. The subroutine DUVMGS uses the so-called golden
section method to search for its minimal point. Other choices of minimization
techniques are possible. We found that with the value of a given in (5.1), the
optimal width of the pulses, Tl*n’ is 0.395 second. The time-dependent fluxes
above the susceptor for the optimal T are compared in Figure 15 with non-
optimal fluxes computed using 7T3,, = 0.300 second and T;, = 0.650 second. We
note that 7}, must be at least .300 second which is the fastest on-off switch in
the flow control panel. The flux above the susceptor for 7}, = 0.300 second is
uniform, i.e., the curve is flat, however, the growth rate is small. On the other
hand, for 73;; = 0.650 second, the growth rate speeds up, but non-uniformity
of film growth results. The optimal solution lies between the above two non-
optimal curves. This solution which corresponds to the optimal duration of the
source vapor pulses achieves both film uniformity and fastest possible growth
rate.
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